Skip to main content

Converting between Coordinate Systems

Dot product of Cartesian and Spherical Coordinates

ρ\rhoϕ\phizz
xxcos(ϕ)cos(\phi)sin(ϕ)-sin(\phi)00
yysin(ϕ)sin(\phi)cos(ϕ)cos(\phi)00
zz000011

Dot product of cylindrical and Spherical Coordinates

rrθ\thetaϕ\phi
xxsinθcosϕsin \theta cos\phicosθcosϕcos \theta cos \phisinϕ-sin \phi
yysinθsinϕsin\theta sin\phicosθsinϕcos \theta sin \phicosϕcos \phi
zzcosθcos \thetasinθ-sin \theta00

Dot product of spherical and cylindrical coordinates

ρ\rhoϕ\phizz
rrsinθsin \theta00cosθcos \theta
θ\thetacosθcos \theta00sinθ-sin\theta
ϕ\phi001100

Conversion

Rectangular to Cylindrical

ρ=x2+y2\rho = \sqrt{ x^2 + y^2 } ϕ=tan1(yx)\phi = tan^{-1}(\frac{y}{x}) z=zz = z

Cylindrical to Rectangular

x=ρcosϕx = \rho cos \phi y=ρsinϕy = \rho sin \phi z=zz = z

Rectangular to Spherical

r=x2+y2+z2r = \sqrt{x^2 + y^2 + z^2} ϕ=tan1(yx)\phi = tan^{-1}(\frac{y}{x}) θ=cos1(zx2+y2+z2)\theta = cos^{-1}(\frac{z}{\sqrt{x^2+y^2+z^2}})

Spherical to Rectangular

x=rsinθcosϕx = r sin\theta cos\phi y=rsinθsinϕy = r sin\theta sin\phi z=rcosθz = r cos\theta

Cylindrical to Spherical

r=ρ2+z2r = \sqrt{\rho^2 + z^2} ϕ=ϕ \phi = \phi θ=cos1(zr)=cos1(zρ2+z2) \theta = \cos^{-1} (\frac{z}{r}) = \cos^{-1} (\frac{z}{\sqrt{\rho^2 + z^2}})

Spherical to Cylindrical

ϕ=ϕ\phi = \phi ρ=rsinθ\rho = r sin\theta z=rcosθz = r cos\theta